

Harmonising Nuclear Codes and Standards for Mechanical Components Professor Nawal K Prinja BSc, MSc, PhD, CEng, FIMechE

Technical Director, Clean Energy, AMEC Foster Wheeler Chair of Mechanical Codes & Standards Task Force, CORDEL, WNA

4TH MDEP CONFERENCE on New Reactor Design Activities SESSION 1: "CODES AND STANDARDS HARMONIZATION" 12-13 SEPTEMBER, LONDON

Contents

- Need for harmonisation
- How it is being achieved
- What has been achieved by MCSTF of WNA/ CORDEL
- Current and future work

Cooperation in Reactor Design Evaluation and Licensing (CORDEL) has a mission to promote the standardization of nuclear reactor designs within a harmonized nuclear regulatory environment. Its **Mechanical Codes and Standards Task Force (MCSTF)** plays a key role in harmonisation of codes and standards.

MDEP's Code Comparison Project Main Reasons for Differences in the Mechanical Codes & Standards

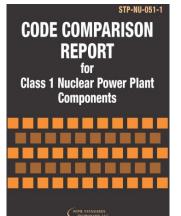
➢General Requirement Practices

Quality Assurance Requirements (NQA-1, ISO 9001, IAEA 50/SG)

Conformity Assessment (Stamping, RPE)

Local qualifications for welding and NDE

Local reference materials


- ➢Scope of Codes
 - ➤CSA Candu reactors
 - ≻AFCEN PWR

► ASME, JSME, KEA, and CSA – BWR, PWR, Candu

Flexibilities allowed due to variation in country practices

Operational experience (prescribed in AFCEN)

> Design and Analysis Flexibility (analysis methodology specified in AFCEN)

Example: Assessing Pressure Vessel to American ASME and Russian PNAE G 7-002-86

Sizing Related: Russian Nominal Allowable Stress = $[\sigma]$ = Minimum ($\sigma_{UTS}/2.6, \sigma_{YS}/1.5$) ASME Design Stress Intensity = Sm = Minimum($\sigma_{UTS}/3, \sigma_{YS}/1.5$)

Pri. Membrane Russian For NOC < $[\sigma]$ For AOO < 1.2 $[\sigma]$ For DA < 1.4 $[\sigma]$ Hydro Test < 1.35 $[\sigma]$ Pri. Membrane ASME For Level A < Sm For Level B < 1.1 Sm For Level C < 1.2 Sm For Level D < 2.4 Sm or 0.7 UTS Hydro. Test < 0.9 σ YS

Example presented by Dr Vaze of BARC

Estimating VVER1000 RPV Thickness

RPV Thickness Calculation using ASME NB and PNAE G 7-002-86

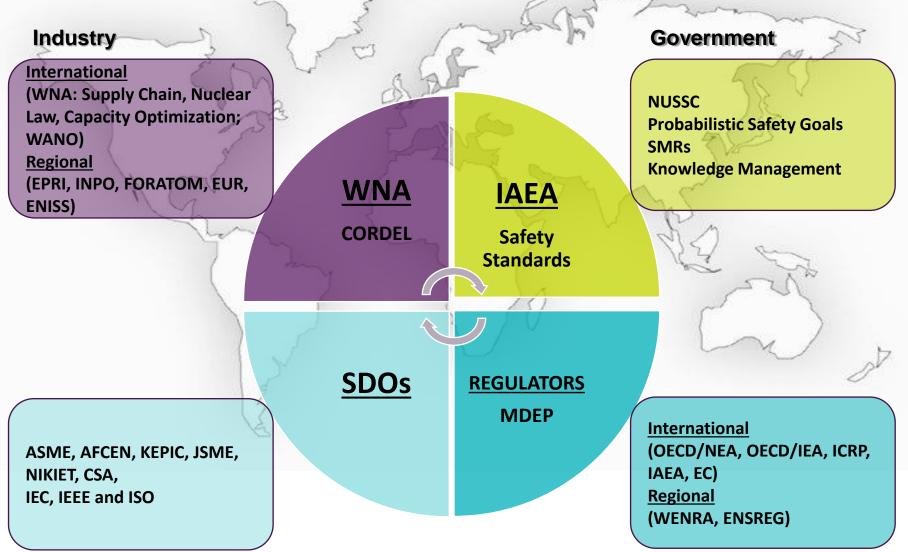
Russian Nominal Allowable Stress
[σ]=Minimum(539/2.6, 441/1.5)=207.3 Mpa

• ASME Design Stress Intensity Sm = Minimum(539/**3**, **441/1.5)= 179.7**

- ASME: Minimum thickness required=214 mm
- PNAE : Minimum thickness required=185 mm
- Actual thickness provided = 192.5 mm

 Although actual thickness is less than the minimum required by ASME: Is design less safe ? May or may not be Should we apply ASME equation to Russian design?

Failure modes and the knowledge of Mechanics used are universal


But code rules differ because of :-

- Regulatory Requirements and Limitations
- Local Industry Practices
- Qualifications of welders, NDE/T personnel and professional Engineers
- QA and compliance requirements
- Scope Differences

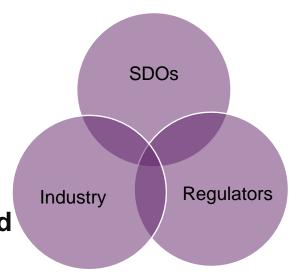
- Applicable and internationally recognized set of Safety requirements
 - IAEA standards underpin safety in all countries
 - Higher level in standards hierarchy, not enforceable
 - Supplemented by enforceable national regulations
- Need harmonisation of more detailed requirements
- Need also an effort on the Industry side:
 - Codes and Standards that are recognised as equivalent by industry (necessary for acceptance being considered by regulatory bodies).
 - A harmonisation effort is required to identify differences and recognised equivalences between major codes.

International Cooperation Framework

Promotion of Harmonization of Standards and Codes

Regulators: MDEP

- Canada, Finland, France, Indi, Japan, Russian Federation, South Africa, the UAE, The UK, the USA, China, and Sweden
- > 1 common position and four technical reports


Standard Development Organizations: SDO Board

- > ASME BPVC III div.1, AFCEN (RCC-M), KEA (KEPIC), JSME (S-NC1), CSA,(N285.0) NIKIET (PNAE-G7)
- Code Comparison Report STP-NU-051

http://files.asme.org/STLLC/31181.pdf

Industry: WNA CORDEL

The international voice of the industry promoting convergence of nuclear design codes

One of the Task Forces of CORDEL set up by the WNA

Aim: To promote the convergence of nuclear mechanical codes and standards in order to facilitate the international standardization of reactor designs:

- For one component designed to a specific code to be easily exportable
- Harmonization of requirements of codes & standards
- Acceptance that international codes can be used to meet regulatory requirements

Membership: Major international reactor vendors, large international utilities, engineering consulting companies and code users.

Harmonisation Work Plan of CORDEL MCSTF

Select topics with input from:

- Industry (CORDEL)
 - Regulators (MDEP-CSWG)
 - SDOs (Convergence Board)

Convene group of experts from the industry to work within CORDEL MCSTF

Report current status of codes

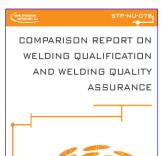
Propose harmonised rules

Define common Code Case

CORDEL MCSTF Projects

Finalised Projects

- Certification of NDE Personnel Published 2015 ✓
- Comparison Report on Welding Qualification and Welding Quality Assurance STP-NU-078 Published 2016

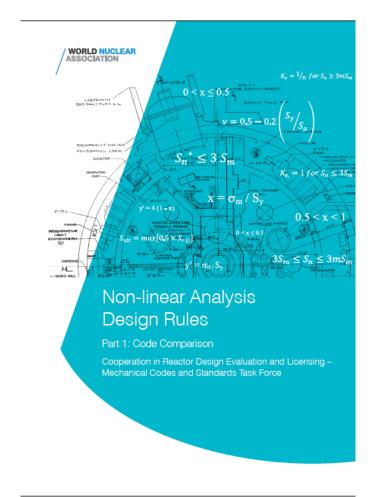

On-Going Projects

Non-linear analysis design rules

- Part 1: Code comparison Published February 2017 ✓
- Part 2: Industry Practices First draft available
- Part 3: Benchmark Workshop to review results to be held in early 2018

Harmonisation of Fatigue Life Analysis Methods

- Part 1: Comparison of Pressure Vessel and Piping Fatigue Design Rules based on S-N (cyclic stress vs. cycles to failure) Approach – *under drafting*
- Part 2: Proposed Harmonized Pressure Vessel and Piping Fatigue Design Rules
- Part 3: Proposed Harmonized Fatigue Crack Growth Analyses
- Part 4: Proposed Harmonized Environmental Effects on Fatigue and Fatigue Crack Growth Analysis


Non-linear analysis design rules

- Question: How to improve Pressure Equipment Code rules considering nonlinear behavior of materials?
- Damages Investigated
 - > Plastic collapse / excessive deformation
 - > Plastic instability / ultimate load
 - Local Failure
 - > Fatigue
 - > Plastic shakedown and ratcheting
- Other aspects: the stress classification rules (reinforced nozzles, elastic follow-up...)
- Loads:
 - Mechanical and thermal
 - > Quasi-static, cyclic or dynamic (later)
- Analysis methods:
 - Elastic
 - Elastic-plastic monotonic/cyclic
 - Limit load
- No buckling; no creep; no cracks

Part 1: Existing Code comparisons

Report Published

Main conclusions:

- No Code for the use of non-linear analysis methods to asses for all failure mechanisms
- > 2 Codes have more detailed requirements for non-linear analysis:
 - AFCEN RCC-MRx
 - ASME BPVC Section VIII Div. 2
- Large improvements to existing Codes are needed

The report lists:

- Major Open Points
- Major Gaps and Needs

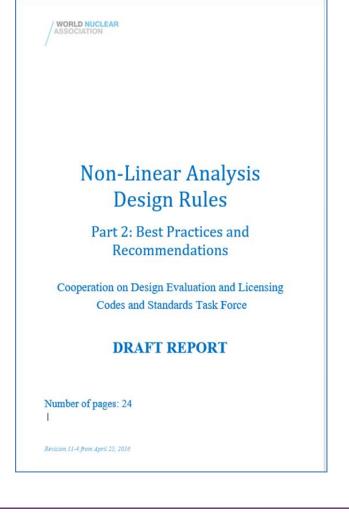
Part 1: Existing Code comparisons

Overview of the non-linear analysis methodologies for monotonic loads

	Plastic collapse				Plastic instability				Stress triaxiality	
	Limit analysis		Direct elastic- plastic FEA		Limit analysis		Direct elastic- plastic FEA		Direct elastic- plastic FEA	
	Material properties	Criteria	Material properties	Criteria	Material properties	Criteria	Material properties	Criteria	Material properties	Criteria
RCCM	Y	Y	N	N	N	N	N	N	N	N
ASME III	Y	Y	N	N	Y	Y	N	N	N	N
JSME	Y	Y	N	N	N	N	N	N	N	N
RCC-MRx	Y	Y	Y	Y	Y	Y	Y	Р	N	N
KEPIC	Y	Y	N	N	Y	Y	N	N	Ν	N
PNAEG	N	Ν	N	N	N	N	N	N	Ν	N
KTA	Ν	N	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν
R5	Y	Y	N	N	N	N	N	N	N	N
ASME VIII	Y	Y	Y	Y	Y	Y	Р	Y	Р	Y
EN 13445	Y	Y	N	N	N	N	N	N	N	N

Y = covered; N = Not covered; P = Partially covered

Part 1: Existing Code comparisons



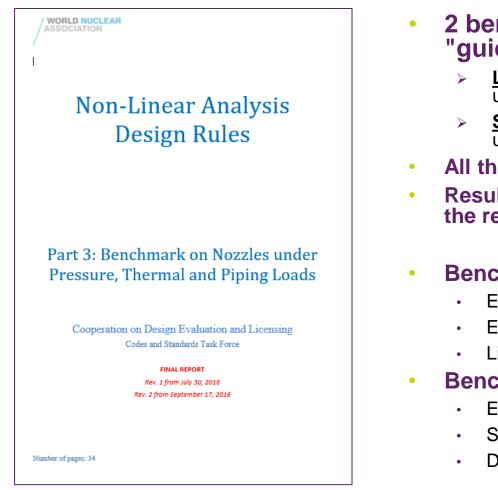
Overview of the non-linear analysis methodologies for cyclic loads

	Plastic shal	kedown	Fatigue K _e				
	Direct elast	ic -plastic analysis usi	Direct elastic-plastic analysis using FEA				
	Material properties	Material constitutive equation	Criteria	Extrapolation rules	Material properties	Material constitutive equation	Method
RCCM	N	N	N	Ν	N	N	N
ASME III	N	Ν	N	Ν	N	N	N
JSME	Y	Р	Y	N	Υ	N	Y
RCC-MRx	Р	P	N	Y	Υ	Р	N
KEPIC	N	Ν	N	N	N	N	N
PNAEG	N	Ν	N	Ν	Y	Υ	Y
КТА	N	N	N	N	N	N	N
R5	N	N	Y	N	N	N	N
ASME VIII	Y	N	Y	N	Υ	N	Y
EN 13445	N	N	N	N	N	N	N

Y = covered; N = Not covered; P = Partially covered

Draft Report available with content:

1. General introduction


- > presentation of "usable" different methods
- Recommendation to users
- > definitions / glossary

2. Proposed rules by damage

- > Step by step approach
- Validation
- **3. Required Material properties**
- 4. Criteria
- 5. Quality management

Part 3: Benchmarks

2 benchmarks to apply and improve "guidelines report"

- Large Low Alloy Steel (LAS) vessel nozzle under pressure and piping loads
- Small Stainless Steel (SS) piping nozzle under pressure and thermal loads
- All the data are in the report
- Result presentation guidelines are also in the report

Benchmark 1

- Elastic codified rules
- Elastic-plastic
- Limit loads

Benchmark 2

- Elastic codified rules
- Simplified elastic-plastic and K_e in Fatigue
- Direct cyclic and plastic shake down

Comparison of Fatigue Life Analysis Methods

Comparison of Pressure Vessel and Piping Fatigue Codified Design Rules Based on S-N Approach

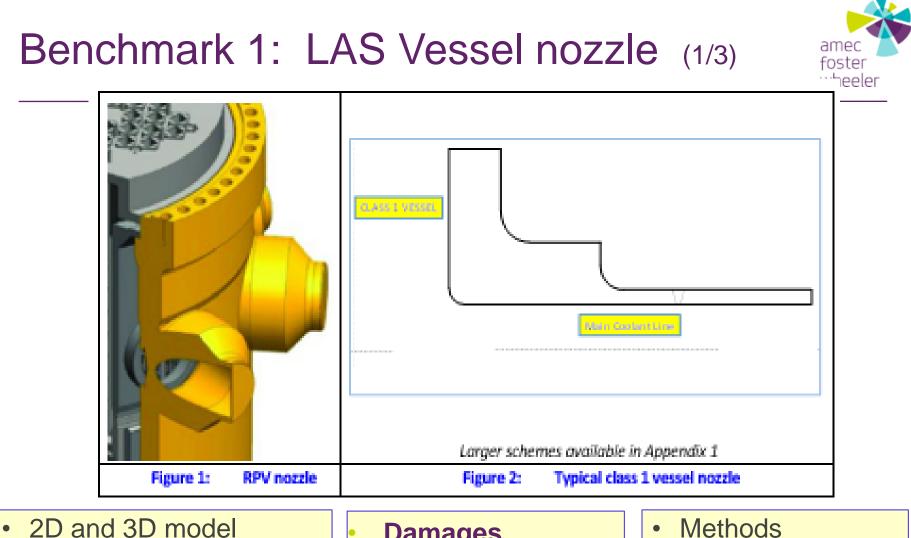
 $\label{eq:cooperation} Cooperation in Reactor Design Evaluation and Licensing - Mechanical Codes and Standards Task Force$

FIRST DRAFT

This report reviews and compares the current code requirements of fatigue analysis and design rules based on the S-N approach in the major nuclear and non-nuclear design codes.

Major nuclear codes:

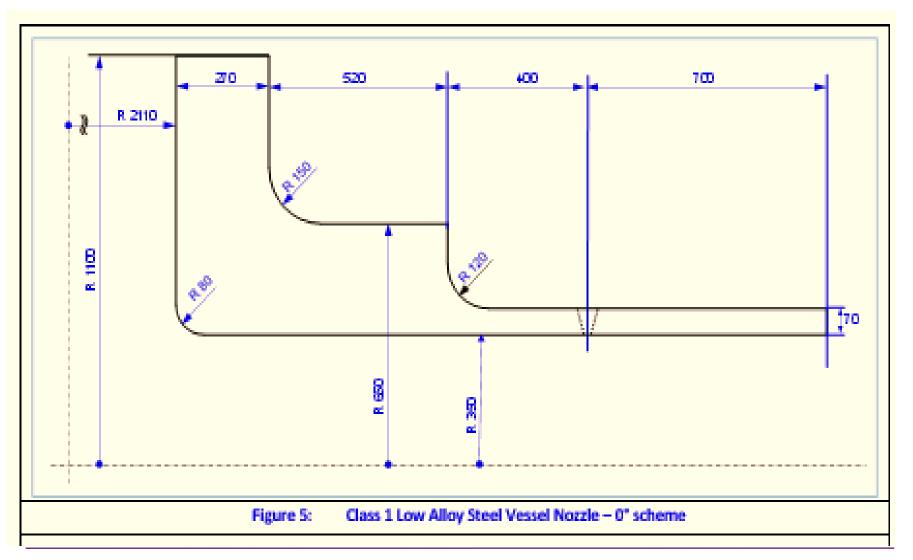
ASME BPVC Section III NB & NH, AFCEN RCC-M & RCC-MRx, JSME, KEPIC, PNEA and R5.


Selected non-nuclear codes:

ASME BPVC Section VIII Division 2, EN 12952-3, EN 13445-3, PD 5500 and JB4732.

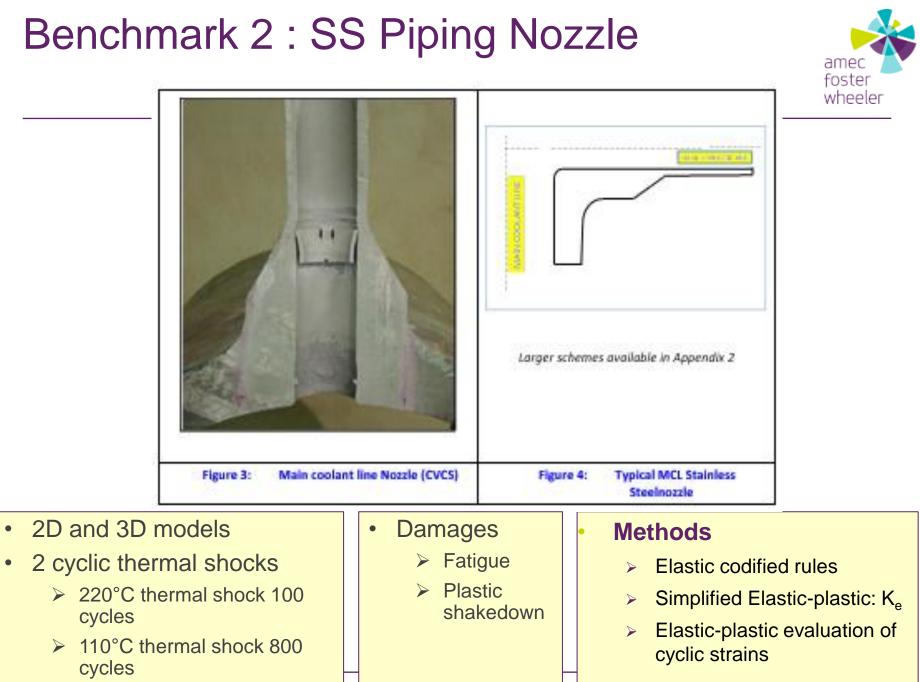
Additional Slides

Benchmark problem

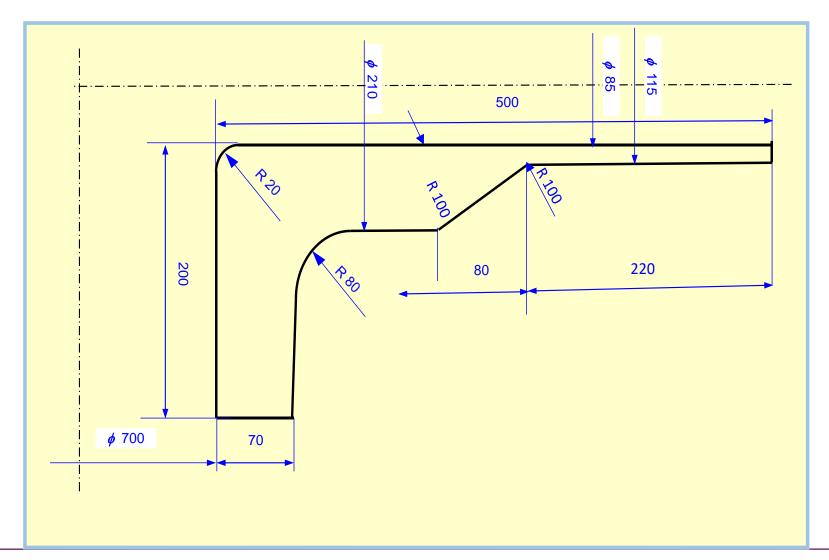

- Loads:
 - Pressure
 - \blacktriangleright or pressure + piping loads

Damages

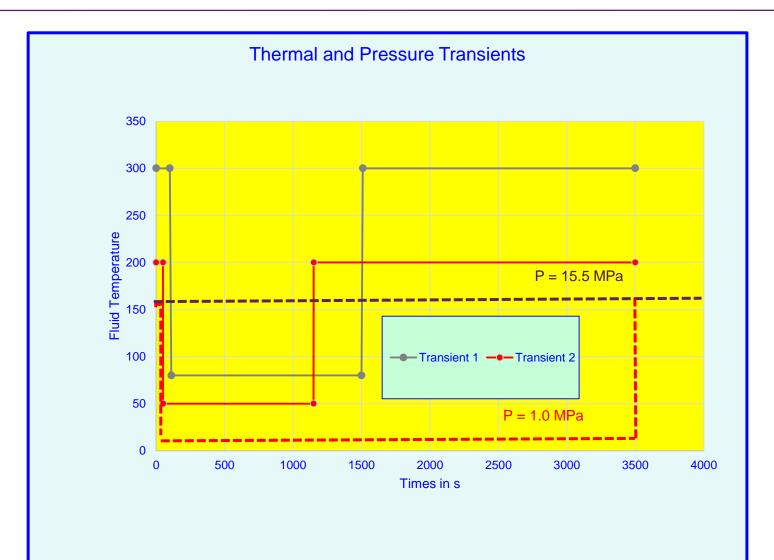
- Plastic collapse \succ
- Plastic instability \succ
- > Local failure


- Methods
 - Elastic codified rules
 - Elastic-plastic
 - Limit load

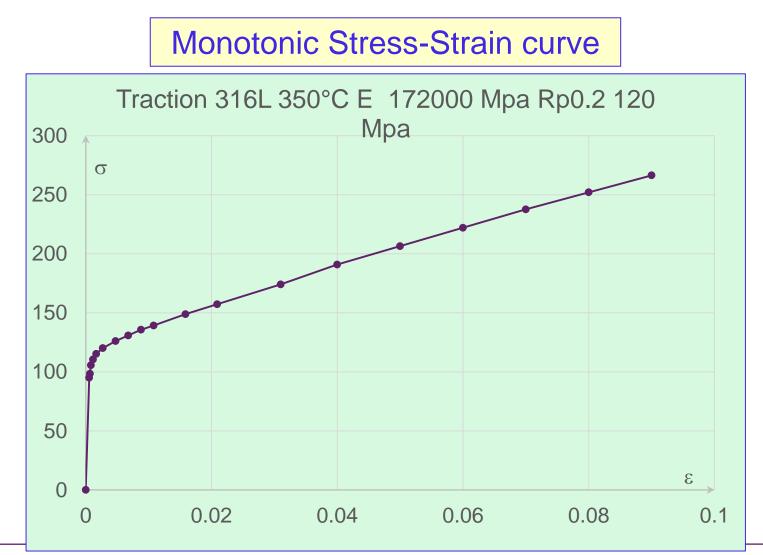
Benchmark 1: LAS Vessel nozzle (2/3)

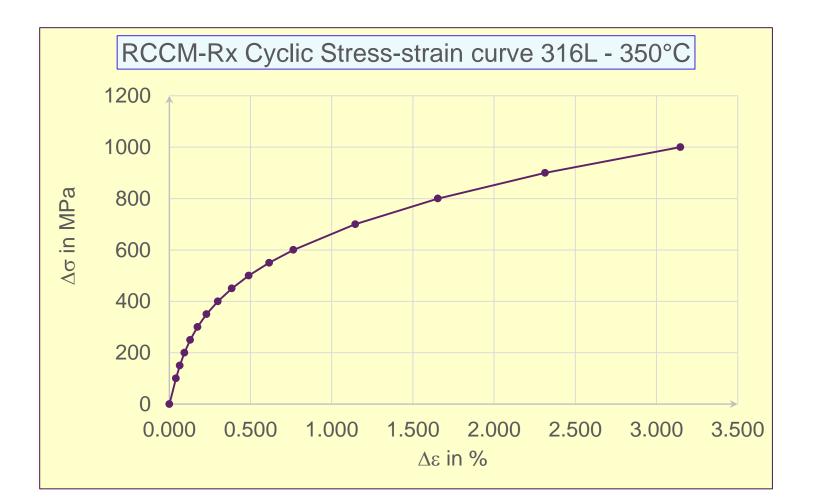

foster wheeler

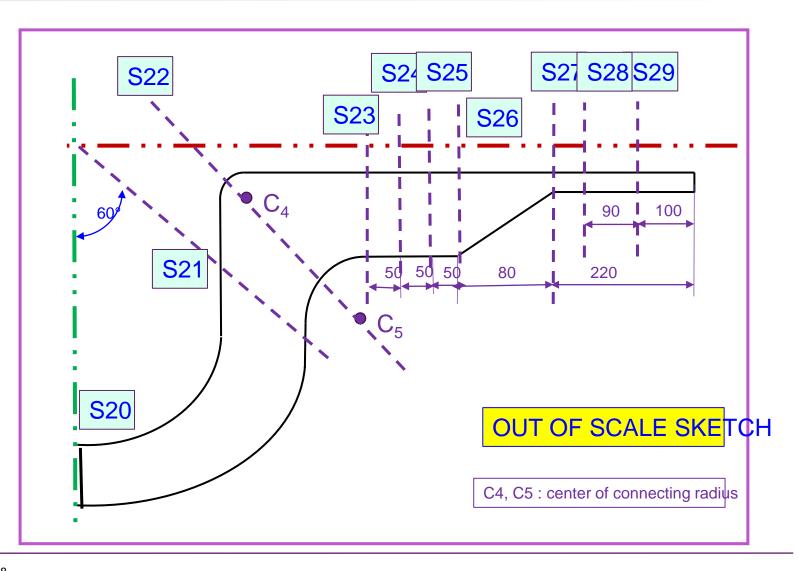
Benchmark 1: LAS Vessel nozzle (3/3) amed foster - Results presentation wheeler **OUT OF SCALE SKE**TCH Radial section (scale effect.. C1, C2, C3 : center of connecting radius H Ø ഗ Ш 100 100 100 100 > <u>_</u> No weld in the basic model, S same material than the nozzle for the pipe S à 5 80 100 100 700 60° Main Coolant Line **S6** S12 **S**7 S9 **S1 S1**


Benchmark 2 : SS Piping Nozzle (1/5)

wheeler


Benchmark 2 : SS Piping Nozzle (2/5) - Transients description


Benchmark 2: SS Piping Nozzle (3/5) - Material properties


Benchmark 2: SS Piping Nozzle (4/5) - Material properties

Benchmark 2 : SS Piping Nozzle (5/5) - Results presentation

Thank You

